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Dash has attributed the low-temperature loss of configurational entropy in impure crystals
to the quantum mobility of the impurities. The resulting specific-heat peaks at T = A/kg have
not yet been observed, probably owing to the extremely small values of the mobility bandwidths
A. TIn this paper it is shown that if A> 7(D%g/a®)!/3, then the mobility bandwidth can be mea-
sured via nuclear-spin-echo-damping experiments carried out at temperatures much larger
than A/kg. D is the diffusion coefficient, q is the lattice spacing, and § is the magnetic-field
gradient (measured in frequency units). The damping factor is shown to have an oscillatory
character in this limit as opposed to the usual classical e-P¢#°/12 form. Practical limits to
the method yield A/kg 210"%°K as an approximate lower bound on detectable widths.

I. INTRODUCTION

Consider the ground-state wave function of a
single impurity atom in an otherwise perfect crys-
tal. Let N, be the number of equivalent binding
sites for the impurity. If the impurity were im-
mobile, then the ground state would be N,-fold de-
generate. Furthermore the ground-state degener-

acy of a dilute solid solution of N < N, impurities
would bet

r=Nr/Nt. (1)

This gives rise to a macroscopic ground-state con-
figurational entropy

Se=kplnl, (2)
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which apparently violates the third law of thermo-
dynamics.

It is possible that the entropy S, is due to a dy-
namic metastability, If the true stable ground state
implied complete phase separation, then the im-
purity immobility which prevents true equilibrium
from being reached would not represent a third-law
violation. Dash?has suggested another intriguing
possibility: the quantum-mobility hypothesis.

Let &3 represent the many-body wave function
for a single impurity to be bound at the lattice site

T=1,2,+ 3, + 153, . (3)

If the Hamiltonian matrix
(@3, H<I>f‘)=h(i' =1, (4)

has nonzero off-diagonal matrix elements between
different initial and final binding sites, then the
impurity is quantum mobile. The N -fold binding
degeneracy is split into an energy band®

E®=2Zin[)e 1, 6)
whose eigenfunctions are the traveling waves
.1 kel
U =—13 e Ui . (6)
Ny i

The third-law loss of configurational entropy of
N <N, impurities in a quantum-mobile energy band
is well understood. ? If the width of the energy band
is A, then one can define a site lifetime* 7 and a
mobility temperature T, by

A=kgTo=7/T. 7

The configurational entropy S, is lost at low tem-
peratures via a specific-heat peak at T=~T.
Mobility specific-heat peaks have not yet been
observed in impure crystals, presumably because
T, is too low a temperature for present-day cryo-
genic technology. However the loss of configura-
tional entropy due to quantum mobility is potentially
useful for improving this technology. 2 It is there-
fore crucial to measure A via experiments carried
out at higher temperatures 7> T,. In a previous
paper® it was shown that T, could be inferred from
the anomalous broadening of a Mdssbauer line in
the impurity nucleus. In this paper it will be shown
that T, can be inferred from an oscillatory behavior
of the impurity nuclear -spin-echo-damping factor.
Nuclear-magnetic-resonance methods® appear to
be capable of measuring quantum-mobility band-
widths as small as A/kp~107° °K.

II. SPIN-ECHO-DAMPING FACTOR

Let m(¢) =s,(¢) +is,(¢) be the transverse spin of
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an impurity nucleus moving in an inhomogeneous
external magnetic field w(¢) in the z direction. The
equation of motion for the nuclear spin is given by

dm(t) _
at

where all of the relaxation mechanisms (except ex-
ternal magnetic field inhomogeneities) are buried
in the relaxation time T',.

If v(¢) is the velocity of the impurity and g is the
external magnetic field gradient, then

—iw®m() - Tiz m() ®)

o) =wo+ [; BVt dty ©)

where w, is the magnetic field felt by the impurity
at time zero. Equations (8) and (9) imply that the
average transverse spin is given by

(m(t)) =e~'*% ¢ /T2 G(¢t) m(0) , (10)

where

6= (e —i [\dt, [[* an §V@) (1)

is the damping factor due to the gradient §= Vo in
the external magnetic field. This damping factor
(measured in spin-echo experiments) is a sensitive
probe of the impurity velocity v(#) and hence of the
impurity mobility or diffusion.
III. CLASSICAL DIFFUSION

The classical method for impurities to diffuse
through solids” is to “jump” over a barrier (energy
@) whenever enough thermal energy is present

(probability proportional to ¢=3/#8T), This leads
to a diffusion coefficient of the form

D=a%ve /%7 | (12)

where a is the lattice parameter and v is a vibra-
tional-attempt frequency.

The damping factor G(¢) can be written in terms
of the diffusion constant D by using the following
argument. In the classical Brownian diffusion of
impurities v(¢) is a Gaussian stochastic process. 8
Therefore Eq. (11) may be written

t t - -
G ={exp -3 ([ [ at, [ * at, g V(t)]*)}. (13)
Furthermore the velocity autocorrelation function

o -t)=(g vt g V') (14)
determines the diffusion constant via the Einstein-
Kubo relation, ®

J otat=g"p . (15)

Equations (13)-(15) imply that
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G(t)= e"zD 112 (classical diffusion) (16)
as t—. The exponential #* decay of Eq. (16)
associated with spin-echo experiments is well
known. !® Our derivation is somewhat unusual since
we have written the general equations in a form also
applicable to the quantum-mobile situation.

IV. QUANTUM MOBILITY

We now wish to evaluate G(f) for temperatures
sufficiently low so that D [see Eq. (12)] can be
neglected. The quantum method of diffusion is to
“tunnel through” (as opposed to “jumping over”)
energy barriers. In a perfect crystal this leads
to the energy bands discussed in Sec. 1. The ve-
locity of a single quantum-mobile impurity in a
perfect crystal is not time dependent, i.e.,

. =nt 3%? . 1)

Equation (11) then reads
G(t) =2z FIE®)] exp(-3ig- Vit?) , (18)

where f(E) is the probability of finding the impurity
with energy E. If T> T,, then all states ¥; with-
in the mobility band are equally probable. In that
case

2
G(t)= (—3—02)-131 /;z % exp <—i§"§'§ ‘2%1.) . (19)

1

The integral in Eq. (19) can be explicitly evalu-
ated for the case of cubic crystals with nearest-
neighbor hopping (i.e., tunneling or exchange):

E(K)=-(B - A) - } A(cosk,a + coskya + cosk,a) .

(20)
In Eq. (20), B is the binding energy of the impurity
and A is the width of the energy band. Equations
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(19) and (20) imply*! (with g parallel to the x axis)
G@)=J,(t2aga/B%) (quantum mobility) ,  (21)

where

+T
Jo(y)= _21‘”_ [ e-w siné d6 (22)

T

is an oscillatory Bessel function.'? The oscilla-
tions of the quantum mobile G(¢) [Eq. (21)] are

qualitatively different than the classical diffusion
G(t) [Eq. (18)].

V. EXPERIMENTAL IMPLICATIONS

The relaxation time associated with classical-
diffusion spin-echo damping is given by

taee = (g%D)Y? (classical diffusion) . (23)

The relaxation time associated with typical oscil -
latory quantum-mobile spin-echo damping is given
by

twobire = (B/ag A)Y? (quantum mobility) ,  (24)

where a is the lattice parameter and A=kzT is
the width of the mobility band. Equation (23) has
been the basis of some of the most accurate deter- -
minations of diffusion constants ever performed in
laboratories. Equation (24) has not yet been ex-
perimentally observed. However the oscillatory
behavior of the damping should be evident when-
ever fuonie < faee. In principle this implies that
oscillatory damping factors can be observed if the
quantum -mobile band thickness obeys

A 1(D%)Ya . (25)

With typical values for (i) diffusion constants at
liquid-helium temperatures [using Eq. (12) to ex-
trapolate to low T], (ii) lattice parameters, and
(iii) laboratory magnetic field gradients, Eq. (25)
implies that mobility widths of A/k5 2 107° °K can
be detected by these methods.
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